MP 205

Technical reference

1. Introduction
1.1. MP 205
2. introduction

The MP205 thermal printer mechanism is the smallest low voltage printer in the industry. The unique feature of combined lever/spring function offers a very compact solution with easy paper jam clerance.
1.2. MP 205 features

- Very compact printer (height is 15 mm , width is 68.2 , depth is 41 mm)
- Up to $60 \mathrm{~mm} / \mathrm{s}$ printing speed
- Ultra light (40 g)
- Starting operating voltage from 4.2 v
- High resolution printing (8 dots $/ \mathrm{mm}$)
- Life of 100 millions pulses, 50 kms
- Low consumption
- Low noise due to its technology (thermal)
- Easy jam clearance due to patented lever/spring
1.3. Revision history

Rev.	Date	Page	Revision item
-	$02 / 05 / 97$	-	Preliminary
A	$13 / 08 / 97$	12	FPC connector
B	$17 / D E C / 98$	9,12	Stepper motor - FPC connectors

This manual provides complete information about MP 205 thermal printer mechanism. Further information are available upon request, such as high speed printing applications and reliability figures.
A.P.S. reserves the right to make changes without notice to the product to improve reliability, function or design. A.P.S. does not assume any liability arising out of the application or use of any product or circuit described herein.

Advanced Printing Systems

TABLE OF CONTENTS

II. MP 2
.1. MP 205.. 2

1.3. REVIION hISTORY .2
2. GENERAL CHARACTERISTICS
THERMAL PRINTHEAD AND PRINTING CONFIGURATION 5
3.1. OUTLINES. $+.5$
3.2. MAXIMUM CONDTTONS AT $25^{\circ} \mathrm{C}$ $\ldots5$
3.3. TYPICAL PRINTING CONDTIIONS $\begin{array}{r}. . . .5 \\ \times \\ \hline . . \\ \hline\end{array}$
3.4. General printing condions $\begin{array}{r}. . . .7 \\ . . . \\ \hline\end{array}$
3.5. Electrical Characteristics $+.7$
3.7. Thermator.9
STEPPER MOTOR10
5. EXAMPLE OF PRINTER DRIVING .11
6. SENSORS $\ldots .11$
6.1. HEADUP ANDDOWN 11
7. PIN OUT ASSIGNEMENT 12
7.1. FLEXI-CABLE CONNECTOR. 12
7.2. FPC SIGNaLS. 13
LIFE IN STANDARD PRINTING CONDITIONS
13
13
9. MECHANICAL AND HOUSING
13
13
10. ORDERING CODE

2. General characteristics

- ITEM	MP 205 / MP 205S
Printing Method	Thermal dot line printing
Number of dots/line	384
Dots density (dot/mm)	8
Printing Width (mm)	48
Paper Width (mm)	$58+0 /-1$
Paper feed pitch (mm)	0.125
Paper Feed tension (g)	50 or more
Paper Hold tension (g)	80 or more
Dimension WxDxH (mm)	68.2×28 (left side)/ $/ 41$ (right side) $\times 15$
Weight (g)	Approx 40
Head temperature detection	Thermistor
Head-up detection	No
Paper end detection	Photo-interruptor
Operation voltage range (V)	Dotline: From 4.2 to 8.5 / Logic: $5 \mathrm{~V}+/ .5 \%$
Current consumption (A)	At printing: $5 \mathrm{~V}:$ 1.9 A (Head) (64 dots ON) $0,5 \mathrm{~A}$ (Motor) $5 \mathrm{~V}:$ 50 mA (Head) At paper feeding : $5 \mathrm{~V}:$ $0,6 \mathrm{~A}$ (Motor) $5 \mathrm{~V}:<100 \mathrm{uA}$ (Head)
Recommended Paper	KF50-HDA or equivalent
Operating temperature range (${ }^{\circ} \mathrm{C}$)	0/+50
Operating humidity ($\mathrm{RH} \%$)	20-85 (no condensation)
Storage temperature range (${ }^{\circ} \mathrm{C}$)	-25/+70
Storage humidity (RH\%)	10-90 (no condensation)

Advanced Printing Systems
3. Thermal Printhead and printing configuration

3.1. Outlines

Heat element structure	2 heaters/dot
Number of heat elements	384 dots
Heat element pitch	0.125 mm
Print width	48 mm (centered on paper)
Total width	54 mm
Average resistance	$142 \mathrm{Ohms}+/-4 \%$

3.2. Maximum conditions at $25^{\circ} \mathrm{C}$

ITEM	MAXIMUM CONDITIONS		UNIT
Supply energy $\left(25^{\circ} \mathrm{C}\right)$	0.45	0.7	$\mathrm{~m} / / \mathrm{dot}$
Print Cycle $\left(25^{\circ} \mathrm{C}\right)$	2.5	5	$\mathrm{~ms} / \mathrm{line}$
Logic voltage	7		volts
Supply voltage	8.5		volts
Head Temperature	65		${ }^{\circ} \mathrm{C}$
Number of dots to be energized simultaneously	192		dots

1/If energy above 0.7 mJ is applied to one dot, the print quality of this dot may be affected (usually by making a "light" print-out).
2 If the print cycle is less than $2.5 \mathrm{~ms} /$ line (above $50 \mathrm{~mm} / \mathrm{s}$), then maximum supply energy value is decreased. For these applications, please contact APS for further information.
3/ In case of double-ply paper or special low energy paper, please contact APS for further information.

3.3. Typical printing conditions

Supply voltage : 5 volts
Power consumption : $0.123 \mathrm{~W} /$ dot
Print cycle : $5 \mathrm{~ms}(25 \mathrm{~mm} / \mathrm{s})$
Energy per dot, $\mathrm{E}_{0}: 0.31 \mathrm{~mJ}$ (from 1 to 64 dots on simultaneously)
Supply current : 3.8 A Peak (192 dots on)

Item	Symbol	Electrical conditions	Unit		
Supply voltage	Vh	5.0	V	64 fired	dots at the
Power consumption	Po	0.123	W/dot		
Print cycle	S.L.T	3.0	$\mathrm{m} /$ /line		
Energy consumption (on time)	$\begin{aligned} & \text { Eo } \\ & \text { (Ton) } \end{aligned}$	0.36	$\mathrm{mJ} /$ dot	$\begin{aligned} & 5^{\circ} \\ & C \end{aligned}$	same time
		(2.96)	ms		
		0.31	$\mathrm{mJ} / \mathrm{dot}$	$\begin{gathered} 25^{\circ} \\ \mathrm{C} \end{gathered}$	
		(2.53)	ms		
		0.28	$\mathrm{mJ} / \mathrm{dot}$	45°	
		(2.28)	ms	C	
Supply current	Io	1.9	A		

The print optical density is then 1,0 minimum with a maximum variation of 0,3 . This measurement is done at the full black pattern by Macbeth densitometer RD-914. Full black pattern means all dots printing pattern (100% black area) printed under correct paper speed.

3.4. General printing conditions

The following formula allows to calculate the heating time $\mathrm{T}_{\text {on }}$ depending on driving voltage V_{H} :

$$
T_{a n}=\frac{E_{0}}{P_{0}}=E_{0} * \frac{\left(N^{*} R_{c o m}+R_{a v}+R_{i c}+R_{l}\right)^{2}}{V_{H}^{2 *} R_{a v}}
$$

Where:
E_{0} is the nominal energy (0.31 mJ)
V_{H} is the driving voltage (5 v)
$R_{a v}$ is the average resistance (142 Ohms)
N is the number of dots energized simultaneously
$R_{\text {com }}$ is the common resistance (0.05 Ohm)
$R_{i c}$ is the driver saturated resistance (15 Ohms)
R_{l} is the lead resistance (10 Ohms)
${ }^{1}$ This condition satisfies the print density as defined in section 3.3
MP 205 - Technical reference - Rev B - 5

The following table gives all the printhead electrical characteristics:

1/ When continuous printing is performed, the supply energy should be reduced so that the substrate temperature monitored through the thermistor will remain below $65^{\circ} \mathrm{C}$
$2 /$ When the printhead operation is finished, print supply voltage should be reduced to the ground level and remained until next printhead operation.
3/ If printing sound, for example sticking sound, please adjust the paper feed speed or pulse to avoid these kind of mechanical resonnance
4/ In order to avoid surge and voltage drops across power wires, Vh and Gnd cable length should be less than 100 mm , and 47uF aluminium capacitor is required between Vh an Gnd at controller board side
5/ please pay attention that the paper does not have characterisitcs that could affect the printhead life (high abrasivity, too low sensitivity or abnormal chemicals)

3.6. Electrical Characteristics

The following chart gives the timing for driving the printhead

Clock

Data In

Latch

Strobe

Driver Out

!! ATTENTION !!!

n order to prevent any dot element damage, the power on and off sequence must be the following
Turn-on: Make sure that the printhead voltage is applied simultaneously or after the logic voltage. - Turn-off: Make sure that the printhead voltage is removed simultaneously or before the logic voltage

ITEM	SYMBOL	MINI	TYP.	MAXI	UNIT
Print voltage	VH	3.5	5.0	8.5	V
Logic voltage	Vdd	4.75	5.00	5.25	V
Logic current	Idd	-	-	48	mA
Input voltage (High)	VIH	0.8 vdd	-	vdd	V
Input voltage (Low)	VIL	0	-	0.2 vdd	V
Data input current (DI) High	ILHDI	-	-	0.5	uA
Data input current (DI) Low	ILLDI	-	-	-0.5	uA
STB I to 6 input current (High)	IIHSTR	-	-	30	uA
STB I to 6 input current (Low)	IIILSTR	-	-	-0.5	uA
Clock input current (High)	ILH CLK	-	-	3	uA
Clock input current (Low)	ILL CLK	-	-	-3	uA
Latch input current (High)	IIH LAT	-	-	3	uA
Latch input current (Low)	IIL LAT	-	-	-3	uA
-	-	-	-	-	-
-	-	-	-	-	-
Data out output voltage (High)	VDOH	4.45	-	-	V
Data out ouptput voltage (Low)	VDOL	-	-	0.05	V
Output voltage (driver out)	VOL	-	1.0	-	V
Clock frequency	fCLK	-	-	8	MHz
Clock width	twCLK	30	-	-	ns
Data setup time	tsetupDI	30	-	-	ns
Data hold time	tholdDI	10	-	-	ns
Latch width	twLAT	100	-	-	ns
Latch setup time	tsetup LAT	200	-	-	ns
Latch hold time	tholdLAT	50	-	-	ns
Data out delay time	tdDO	-	-	120	ns
STR setup time	tsetup STB	300	-	-	ns
Driver out delay time	-	-	5	us	

Note: 1 /The first bit of data (dot 1) entered is the first bit of data printed (FIFO), left side of TPH, top view (gearing side of the printer)
2/ STB 1 to STB 6 drive one sixth of the printhead, starting from dot 1.

APS

3.7. Thermistor

When performing continuous printing, it is recommended that the supply energy should be reduced so that the substrate temperature monitored through the thermistor will remain below the maximum temperature shown in section 3.2.

The thermistor specification is the following:

- R25, resistance at $25^{\circ} \mathrm{C}:$		$30 \mathrm{KOhms}+/-5 \%$ at $25^{\circ} \mathrm{C}$
- B value:		$3950 \mathrm{KOhms}+/-2 \%$
- Operating temperature	$:$	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
- Time constant:		Max. 30 sec (in the air)

Then the resistance value, R, versus temperature, T (in ${ }^{\circ} \mathrm{C}$), is given by this formula:

$$
R(T)=R 25 * e^{B \div \frac{1}{T+273} \cdot \frac{1}{2 S+273}}
$$

4. Stepper motor

The paper feed pitch for stepper motor is 2 steps for one dotine ($0,125 \mathrm{~mm}$). For good print quality you are advised to keep the current into the windings between two successive dotlines.
The timing diagram is then as follows:

PHASE 1
PHASE 2
PHASE 3

PHASE 4

DOTLINE

There are four different positions for the stepper motor. The driving is bipolar and can be achieved with circuits like Rohm BA6845FS. Please refer to the IC's data sheet for further informations. It is recommanded not to exceed 0.2 v like voltage drop in the stepper motor driver circuit.
The coil resistance is 12 Ohms and rated current is 6500 mA (5 volts) when paper is fed at $20 \mathrm{~mm} / \mathrm{s}$.
Note: With a maximum speed of $12 \mathrm{~mm} / \mathrm{s}$ automatic paper loading can be achieved (with head in down position) at 5 V .

In order not to overheat the stepper motor it is required to respect the following ON/OFF ratio for the stepper motor:

Voltage	Max. Paper feed time (mn)	ON/OFF Ratio
<4.8	-	100%
4.8	3	90%
6	2	40%
7	1.305	35%
8.5	305	30%

Additionnal optimization can be achieved by using chopper driving in the stepper motor. To reduce current and potential noise, the current needs to be kept into the windings (slow graphics printout,...). Please contact APS for further information and application nots for continuous printing at 5 volts.

5. Example of printer driving

Although the printer consumption can be maintained at about 2 amperes (peak of current), the following chart gives the maximum characterisitcs for printing speed and paper feed that can be achieved with the MP205 printer mechanism

		MP 205	MP205
Voltage	Heating Time (ms)	Paper feed $(\mathrm{mm} / \mathrm{s})$	Printing speed (mm/s)
4.2	3.6	15	20
5	2.53	35	30
5.5	2.1	50	35
6	1.75	60	42
6.5	1.49	60	50
7	1.3	60	57
7.5	1.13	60	60
8	1	60	60
8.5	0.87	60	60

Advanced Printing Systems

6. Sensors

6.1. Head up and down

The head-up function works as follows. The wire spring that presses the head against the rubber roller can rotate. This in turn releases the pressure against the head and opens it. There is no sensor motoring the position of the spring. Please note that the life of the thermal head will not be affected as the life of the head was originally qualified with the head exposed to the air.

6.2. End of paper sensor

MP 205 has an end of paper sensor that functions using a photo-transistor. Arrange the circuitry so that no energy is applied to the head when the mechanism runs out of paper. If the head is energized in the down position and with no paper in the mechanism, both roller and head may get severely damaged.

General specifications:

ITEM	Symbol	CONDITIONS	Min	Typ	Max	Unit
Forward current photodiode	I_{F}	$\mathrm{V}_{\mathrm{F}}=5 \mathrm{v} \pm 5 \%$	-	20	30	mA
Reverse current	I_{R}	$\mathrm{~V}_{\mathrm{r}}=5 \mathrm{~V}$	-	-	10	uA
Output dark current	$\mathrm{I}_{\mathrm{CEO}}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	-	-	0.2	uA
Light current	I_{L}	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	90	-	660	uA
Time	T_{R}	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}$ $\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$ $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$	-	30	-	us
			-	25	-	us

One possible interfacing is as follows:

$$
\begin{aligned}
& \text { Vpaper }<2.5 \mathrm{v} \\
& \text { V no paper }>4.5 \mathrm{v}
\end{aligned}
$$

7. Pin out assignement

7.1. Flexi-cable connector

MOLEX 39-51-3274 (straight tail) or 34-51-3273 (right angle) = ZIF type (zero insertion force) JST 27-FE-BT-VK-N (top entry type) or 27-FE-ST-VK-N (side entry type)

7.2. FPC Signals

Only one FPC gathered all the signals to the printer

Pin Number	Signal name	Function
1	CO	Collector of photo-transistor
2	VF	Anode of photo-sensor
3	L_GND	Gnd for logic
4	VH	Dotline voltage
5	VH	Dotline voltage
6	DI	Data input
7	STB6	Sixth strobe
8	STB5	Fifth strobe
9	STB4	Fourth strobe
10	P_GND	Gnd for logic
11	P-GND	Gnd for dotline
12	P-GND	Gnd for dotline
13	P-GND	Gnd for dotline
14	TM	Thermistor first terminal (second in Gnd)
15	STB3	Third strobe
16	STB2	Second strobe
17	STB1	First strobe
18	Vdd	Logic voltage
19	CLK	Serial clock
20	LAT	Latch
21	DO	Data output
22	VH	Dotline voltage
23	VH	Dotline voltage
24	SM4	Fourth phase of stepper motor A
25	SM3	Third phase of stepper motor B
26	SM2	Second phase of stepper motor $\sim A$
27	SM1	First phase of stepper motor $\sim B$

$A P S$
8. Life In standard printing conditions

Life is defined as a changein the resistance value of any dots equal to 15% from their initial value. Head temperature shall not exceed the maximum $60^{\circ} \mathrm{C}$ with thermistor reading.

Then:

- Pulse life : $\quad 100.10^{6}$ Pulses
- Abrasion life: 50 kms guaranteed

9. Mechanical and housing

See attached drawing.
10. Ordering code

Standard MP 205: MP 205

Home

$\angle \dot{\varepsilon}$

