micro dot printer M - 190 Specification

STANDARD	
REV. No.	REV. A
Created or updated date	
Notes	

EPSON

SUMMARY

The $M-190$ is a mechanical dot printer with a print head consisting of 8 print solenoids arranged in a horizontal line. The print head moves horizontally to print each dot line.
The print head which moves horizontally and performs uni-directional printing as each print solenoid is energized in order.

Paper is automatically fed one pitch when the print head returns. The desired print format is obtained by repeating this operation.

The $\mathrm{M}-190$ has the following features:

1. Clear print quality from the impact dot printing system.
2. Ultra compact (height: 15.8 mm), light weight (100 g), and high reliability (MCBF: $1,500,000$ lines).
3. Can be driven using Ni-Cd batteries.
4. Low running cost is obtained by using normal paper and a long-life ribbon (ERC-22).
5. Copies are possible (one original + one copy)
6. Fast paper feed and paper release mechanism.
7. Graphic characters can be printed.
8. An exclusive LSI chip can be used.
9. Various options are available (see below).

Options

Item	Specifications	Note
Ribbon cassette	ERC-09 (purple)	Life: Approx. 250,000 characters
	ERC-09 (black)	Life: Approx. 200,000 characters
	ERC-22 (purple)	Life: Approx. 1,000,000 characters
ERC-22 (black)	Life: Approx. 600,000 characters	
Manual feed knob	Horizontal type Vertical type	Outside diameter: $\varnothing 20 \mathrm{~mm}$ Outside diameter: $\varnothing 22 \mathrm{~mm}$

SHEET REVISION	NO.	
A	NEXT	SHEET

CAUTION

1. This specification shall apply only to the product(s) identified herein.
2. This specification may be modified by SEIKO EPSON CORPORATION without notice. It is necessary for "the customer" to inquire from SEIKO EPSON CORPORATION concerning the latest specifications.
3. SEIKO EPSON CORPORATION shall not warrant that the contents of this specification are not defective and do not infringe any rights of third parties, unless otherwise agreed by written consent between "the customer" and SEIKO EPSON CORPORATION.
4. "The customer" shall not make any duplicates of this specification without prior written approval of SEIKO EPSON CORPORATION.

Table of Contents

1. GENERAL SPECIFICATIONS 1
2. DETAILED SPECIFICATIONS 4
2.1 Print Format 4
2.2 Paper Feeding 6
2.3 Ribbon Cassette 6
2.4 Paper 7
2.5 Timing Detector 8
2.6 Reset Detector 9
2.7 Motor 10
2.8 Print Solenoids 12
2.9 Fast Paper Feed Trigger Solenoid 15
2.10 Detection of Abnormal Printer Conditions 16
2.11 Maximum Allowable Continuous Energizing Time 17
2.12 Terminal Assignment 18
2.13 Timing Chart 19
2.14 Overall Dimensions 24
3. PRESSURE SENSITIVE PAPER SPECIFICATIONS 26
3.1 Applied Model 26
3.2 Characteristic Items and Tolerances 26
3.3 Terminal Voltages of Print Solenoid and Motor 26
3.4 Print Method 27
3.5 Paper 27
4. OUTER CASE DESIGN GUIDE 32
4.1 Motor Drive Signal and Motor Brake Signal 32
4.2 Connections 32
4.3 Ribbon Cassette Handling 33
4.4 Paper Entrance and Paper Holder Design 34
4.5 Paper Cutter Design 34
4.6 Case Design around the Paper Feed Knob 34
4.7 Paper Roll-in Protection 34
4.8 External Interference Protection 34
4.9 Other Notes on Designing the Outer Case 35
4.10 Notes on Printer Handling 35
4.11 Printer Installation 35
5. RIBBON CASSETTE SPECIFICATIONS 38
5.1 Ribbon Cassette Specifications 38
5.2 ERC-09 Overall Dimensions 39
5.3 ERC-22 Overall Dimensions 40
Attached Table 1. Print Sample App. 1

SHEET REVISION	NO.	
	NEXT	SHEET

1. GENERAL SPECIFICATIONS

1.1 Print Method

Impact dot matrix printer (8 print solenoids)

1.2 Print Format

1) Total number of dots: Maximum 144 dots/dot line
2) Number of columns: Maximum 24 (5×7 dot matrix and 1 dot column space) (3 columns/print solenoid $\times 8$)

1.3 Printing Speed

1) 1 dot line: \quad Typ. 50 ms (at $4.8 \mathrm{VDC}, 25^{\circ} \mathrm{C}$, continuous printing)
2) 5×7 dot matrix (3 -dot line spacing):
2.5 lines $/ \mathrm{sec} \pm 15 \%$ (at $4.8 \mathrm{VDC}, 25^{\circ} \mathrm{C}$, continuous printing)

1.4 Character Size

1) Dot pitch: Horizontal; 0.33 mm , Vertical; 0.37 mm
2) 5×7 dot matrix:
$1.7 \mathrm{~mm}(\mathrm{~W}) \times 2.6 \mathrm{~mm}(\mathrm{H})$

1.5 Coping Capability

1 original +1 copy

1.6 Paper

Normal paper or the specified pressure sensitive paper of 57.5 mm wide.

1.7 Paper Feed

Paper is automatically fed every dot line.
Fast paper feeding is possible (6.0 lines $/ \mathrm{sec} \pm 15 \%$ (at $4.8 \mathrm{VDC}, 25^{\circ} \mathrm{C}$, continuous printing))
With paper release mechanism.

1.8 Inking

Ribbon cassette (ERC-09 or ERC-22)
Ribbon is automatically fed while motor is rotating.

EDOMN	TITLE	$M-190$Specification(STANDARD)	SHEETREVISION	NO.	
			A	NEXT	SHEET

1.9 Motor

1) Terminal voltage:
$4.8 \pm{ }_{1.0}^{0.7} \mathrm{VDC}$ (Ni -Cd battery, nominal voltage 4.8 V)
$4.8 \pm 0.4 \mathrm{VDC}$ (when stabilized power supply is used)
2) Mean current:

Typ. 0.35 A (4.8 VDC , at $25^{\circ} \mathrm{C}$, as measured with an ammeter)

1.10 Timing Detector

Tachometer-generator (connected directly to the motor)

1.11 Reset Detector

Reed switch

1.12 Print Solenoid

1) Terminal voltage
$4.8 \pm{ }_{1.5}^{0.7} \mathrm{VDC}$ ($\mathrm{Ni}-\mathrm{Cd}$ battery, nominal voltage 4.8 V) $4.8 \pm_{1.5}^{0.4} \mathrm{VDC}$ (when stabilized power supply is used)
(However, the print solenoid terminal voltage and motor terminal voltage should satisfy the voltage relationship shown in Section 2.8.1)).
2) $D C$ resistance:
$1.3 \Omega \pm 10 \%\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

1.13 Fast Paper Feed Trigger Solenoid

1) Terminal voltage
2) $D C$ resistance:

1.14 Connection

1) Printer side:
2) Circuit side:
P.C.B. fixed to the frame (with 2.5 mm pitch copper pattern)
Flat cables or lead wires

1.15 Operating Ambient Temperature

0 to $50^{\circ} \mathrm{C}$

EPSON

M-190
Specification (STANDARD)

SHEET	NO.	
A	NEXT	SHEET
		2

1.16 Reliability

M.C.B.F.: $\quad 1,500,000$ lines

Printer life: $\quad 2,250,000$ lines
Provided that during the M.C.B.F. and Life time, Print Example in Attached Figure 1 is printed.
Also, when one of the following parts or units fails, the printer is considered to have reached the end of its life.
(Head unit, head cam unit, motor)

Reference:

Reliable Period: 1,500,000 lines
Cumulative failure rate during the Reliable Period $F(t)=30 \% / 1,500,000$ lines

1.17 Overall Dimensions

$91 \mathrm{~mm} \cdot(\mathrm{~W}) \times 46.9 \mathrm{~mm}(\mathrm{D}) \times 15.8 \mathrm{~mm}(H)$ (excluding manual feed knob)

1.18 Weight

Approx. 100 g .

NOTE: Terminal voltage is the voltage at the printer board terminal, and it is the voltage which should be ensured after the voltage on the drive circuit side drops due to energizing.

	TITLE	$M-190$ Specification (STANDARD)	$\begin{aligned} & \text { SHEET } \\ & \text { REVISION } \end{aligned}$	NO.	
			A	NEXT	SHEET

2. DETAILED SPECIFICATIONS

2.1 Print Format

The print head consists of 8 print solenoids (A, B, C, D, E, F, G and H) arranged in a horizontal line. The print head moves from the left (from the standby position) to the right, printing at 18 positions as each print solenoid is energized, so that one dot line is formed. The total number of dots per dot line is 144 (18 positions $\times 8$ solenoids).

5×7 Dot matrix:

Divide 18 positions by three. Out of 6 dots, use 5 dots for printing and 1 dot for column space. By repeating this 7 times in the vertical direction (paper feed direction), a 5×7 dot matrix of 24 columns (3 columns $\times 8$ solenoids) can be obtained.
$(5+1) \times 24=144$ dots/dot line

<Terms> Room temperature and normal humidity When paper is fed under normal conditions, the paper edge should not fold.

NOTE: The values above are design values. Therefore the dot blur is nol being considered.

For 1-dot column spacing

SHEET REVISION	NO.	
A		NEXT
		5

2.2 Paper Feeding

1) When printing: \quad Paper is automatically fed one pitch $(0.37 \mathrm{~mm})$ when the print head returns.
2) Space feed
(a) One pitch feeding: Same as when printing
(b) Fast feeding:

Paper is fed three pitches when the print head goes back and forth by driving the fast paper feed trigger solenoid.
3) Paper release mechanism:

Paper can be pulled out (straight forward or backward) by stopping the motor quickly while satisfying the requirements given in Section 2.7.1), because the paper release mechanism operates.

NOTE: 1. When the motor halts without satisfying the requirements given in Section 2.7.1), the paper release mechanism won't operate.
4) Manual feed knob:

Paper can be fed forward or backward by rotating the manual feed knob when the printer is halted and the paper released.

NOTES: 1. If the paper release mechanism does not operate, paper cannot be fed backward with the manual feed knob.
2. Nothing shall touch (so as to resist rotation) the manual feed knob during printer operation.

2.3 Ribbon Cassette

Two types of ribbon cassettes (ERC-09 and ERC-22) can be used with the M-190.
Refer to Section 5 (RIBBON CASSETTE SPECIFICATIONS) for more detailed specifications.

SHEET REVISION	NO.	
A	NEXT	SHEET
		6

2.4 Paper

$\begin{array}{ll}\text { 1) Type: } & \begin{array}{l}\text { Normal or specified pressure sensitive paper } \\ \\ \text { (For specified pressure sensitive paper, refer to Section } 3 \text { (PRES- }\end{array} \\ & \text { SURE SENSITIVE PAPER SPECIFICATIONS.)) } \\ \text { 2) Form (normal paper): } & 57.5 \pm 0.5 \mathrm{~mm} \text { (width) } \times \varnothing 83+0 \mathrm{~mm} \text { (outside diameter) } \\ & \times \varnothing 10-0 \mathrm{~mm} \text { (inside diameter) }\end{array}$
NOTE: Inside end of paper roll should meet the following conditions:

1. No fold is allowed. The paper must be wound so that the paper edge goes along the internal circumference. (Refer to Figure A below.)
2. No folding back is allowed.
3. Inside end must not be glued to the core. (when a core exists).

3) Paper supply load: . The paper supply load at the paper entrance should be 30 g or less.
4) Paper thickness (normal paper):
0.06 to 0.085 mm
5) Weight (normal paper): $\quad 52.3$ to $64 \mathrm{~g} / \mathrm{m}^{2}$ (45 to $55 \mathrm{Kg} / 1000$ sheets $/ 1091 \mathrm{~mm} \times 788 \mathrm{~mm}$)
6) Others: No gluing at either side of roll paper.

EPSON	TITLE $M-190$ Specification (STANDARD)	SHEET REVISION A	NO.	
			NEXT	$\begin{array}{\|c} \hline \text { SHEET } \\ 7 \end{array}$

2.5 Timing Detector

The timing detector is a tachometer-generator that is connected directly to the motor. It generates 90 output pulses per 1 dot line; 54 pulses correspond to the printing area and 36 correspond to the print head return. The pulses are used to control print head energizing, and are to be wave-shaped on the user side. The pulses constitute timing signal T .

1) Timing pulses:

Timing signal T should be obtained using a threshold level of $0 \pm 0.1 \mathrm{~V}$ on the timing detector output signal.
2) Output waveform:

<Waveform shaping circuit example>

NOTE: Be sure to use a diode for protection (in case the output voltage becomes 10 Vp -por more).

TITLE

| SHEET |
| :---: | :--- | :--- |
| REVISION |$|$| NO. |
| :--- |
| |
| A |

2.6 Reset Detector

This detector is a reed switch that closes once for each dot line. The reset detector output signal (reset signal R) is used to reset the counting of timing signal T for each printing cycle of either characters or graphics.
※ Forprinting one character line (ex. 5×7 dot matrix), reset signal R is detected only whentiming signal $T 1$ is detected, and printing is controlled by the count of timing signal T until one character line is completed.
(Refer to Section 2.13.)

1) Reset signal R:
2) Rating:

The reset detector output signal is confirmed when the reed switch closes for 55μ s or more, and is denoted as reset signal R.
Rated voltage: 2.85 to 10 VDC
Rated current: $\quad 20$ to $1000 \mu \mathrm{~A}$:
Instantaneous power (Maximum value of open/ciose capacity): 5 mW (resistive load)
3) Waveform phase:

NOTES: 1. Signals in \square should be provided from the user side.
2. During constant motor speed (except for the period from motor start-up to generation of reset signal R1)

EDSOA	TITLE $M-190$ Specification (STANDARD)	SHEET REVISION	NO.	
		A	NEXT	$\begin{gathered} \text { SHEET } \\ 19 \\ \hline \end{gathered}$

2.7 Motor

1) Driving and braking: Energize the motor driving signal to start a stopped motor.

Shut off the motor drive signal within 0.5 ms from the leading edge of reset signal Rn (Rn is R 10 for the 5×7 dot matrix and 3 -dot line spacing), short circuit the motor terminals with a transistor by energizing the motor braking signal (100 ms or more), to quickly stop the motor. If the motor is not stopped quickly, the paper release mechanism will not work.

NOTES: 1. Signals in \square should be provided from the user side.
2. Use a low-saturation transistor for motor driving/braking.
2) Stopping due to an abnormality:

Refer to Sections 2.10 and 2.11.
3) Terminal voltage:
$4.8 \pm_{1.0}^{0.7} \mathrm{VDC}(\mathrm{Ni}-\mathrm{Cd}$ battery, nominal voltage 4.8 V)
$4.8 \pm{ }_{1.0}^{0.4} \mathrm{VDC}$ (when stabilized power supply is used.)

-800N	TITLE M-190 Specification (STANDARD)	$\begin{aligned} & \text { SHEET } \\ & \text { REVISION } \end{aligned}$		
			NO.	
		A	NEXT	SHEET

4) Current:
(a) Peak current:

Typ. 1.2 A (4.8 VDC, $25^{\circ} \mathrm{C}$)
(Worst case: 1.8 A or less)
(b) Mean current: Typ. 0.35 A (4.8 VDC, $25^{\circ} \mathrm{C}$, as measured with an ammeter)
(c) Current waveform:

Refer to Figure below. (4.8 VDC, $25^{\circ} \mathrm{C}$)

2.8 Print Solenoids

Dot printing is performed by energizing the print solenoids.

1) Terminal voltage:
$4.8 \pm{ }_{1.5}^{0.7} \mathrm{VDC}$ (Ni -Cd battery, nominal voltage 4.8 V)
$4.8 \pm{ }_{1.5}^{0.4}$ VDC (when stabilized power supply is used.)
The print solenoid terminal voltage and motor terminal voltage should satisfy the voltage relationship shown by in the following figure.
Refer to Section 3 when using the specified pressure sensitive paper.

The shaded area shown by 縒 is available only when using $\mathrm{Ni}-\mathrm{Cd}$ battery.
 <Circuit Example>

NOTES: 1. Use a low-saturation transistor for driving the print solenoids.
2. The Zener diode for current suppression should be able to handle the maximum collecter-emittor rating of the print solenoid drive transistor.
3. Print solenoid drive pulse P should not shut off due to noise.
4. Up to 3 print solenoids may sometimes be energized at the same time. Therefore, when using transistor arrays, it is better not to connect A, D and G to the same array. (The same holds for B, E and H, and C and F.)

EPSON

M-190
Specification (STANDARD)
2) $D C$ resistance:
3) Peak current:
4) Pulse width:
5) Power consumption:
6) Energizing duty:
7) Number of solenoids energized at the same time:

Max. 3
8) Continuous energizing: One print solenoid can be energized continuously up to 400 dot lines ($6 \times 3 \times 400=7200$ dots). However, the non-energized time should always be twice as long as the continuous energized time.
9) Current suppressor: Should be prepared on the user side.
10) Solenoid protection for abnormal conditions:

Refer to Sections 2.10 and 2.11.

SHEET REVISION	No.	
A	NEXT	SHEET
A		13

NOTES: 1. $11=12 \leq 50 \mu \mathrm{~s}$
2. For printing, print solenoids A, D and G are energized with drive pulse P_{n} which has the pulse width of timing signal $T n$ to $T n+1$. Next, print solenoids B, E and H are energized with drive pulse $P n+1$ which has a pulse width equal 10 timing signal $T n+1$ to $T n+2$. In the same way, print solenoids C and F are energized with drive pulse $P_{n}+2$, and then print solenoids A, D and G are energized with drive puise $P n+3$. The 8 solenoids should be driven in the order $(A, D, G)-(B, E, H)-(C, F)$.

EPSON

TITLE | | |
| :---: | :---: |
| | |
| | Specification |
| | (STANDARD) |

SHEET REVISION	NO.	
	NEXT	SHEET
A		14

2.9 Fast Paper Feed Trigger Solenoid

Paper is fed at high-speed (three pitches when print head returns) by energizing the fast paper feed trigger solenoid during the period of time from the leading edge of timing pulse Tft, which is generated first after reset pulse R, to the leading edge of timing pulse Tf6 which is the 5 th pulse from Tft.

The same paper feed operation can be performed in the 5×7 dot matrix (line space: 3 dots) printing mode by driving the fast paper feed trigger solenoid during the period from the leading edge of T 631 to the leading edge of T636.

1) Terminal voltage: $\quad 4.8 \pm_{1.0}^{0.7}$ VDC (Ni-Cd battery, nominal voltage 4.8 V)
$4.8 \pm_{1.0}^{0.4}$ VDC (when stabilized power supply is used.)
(Use the same power supply as that for the motor so that the terminal voltages match.)
2) $D C$ resistance: $20 \Omega \pm 10 \%$ (at $25^{\circ} \mathrm{C}$)
3) Drive pulse width:

Reset signal R

Timing signal T
Fast paper feed trigger solenoid drive pulse

Signals in $\square \square$ should be provided from the user side.
Numbers in () denote timing pulses when fast paper feed is performed in 5×7 dot matrix with 3 -dot line spacing mode.
(1) Delay in starting drive pulse:
0.1 ms or less
(2) Delay in stopping drive pulse:
0.1 ms or less

EPSON	TITLE	M-190 Specification (STANDARD)	SHEET REVISION A	NO.	
				NEXT	SHEET

4) Drive circuit:

A diode is used as a current suppressor and it should be prepared on the user side.
(1S2075K or equivalent)

NOTES: 1. The fast paper feed trigger solenoid should not be disturbed or stopped by noise.
2. Use a low-saturation transistor to drive the fast paper feed trigger solenoid.
5) Protection of fast paper feed trigger solenoid against abnormalities:

Refer to Sections 2.10 and 2.11.

2.10 Detection of Abnormal Printer Conditions

1) Detection of abnormal conditions:

Abnormal printer conditions are detected by monitoring the period of timing signal T. When the period is more than 2.8 ms , the printer is considered to be in an abnormal condition.
However, for a period of 100 ms after energizing the motor drive signal or after energizing the motor brake signal, the monitoring of timing signal T should be suspended.
2) Handling abnormal conditions:

Whenever an abnormal condition is detected, the motor, print solenoid, and fast paper feed trigger solenoid drive signals should be immediately shut off.
Allowable delay until shut off:
Motor: $\quad 1 \mathrm{sec}$. or less
Print solenoid:
Fast paper feed trigger solenoid:

Refer to Section 2.11.
Refer to Section 2.11.
3) Procedure after abnormal conditions:

Check whether or not a paper jam has occurred or if a foreign object has fallen into the printer. if a paper jam or foreign object is present, remove it and restart the printer.

2.11 Maximum Allowable Continuous Energizing Time

The continuous energizing time (including the abnormal condition of Section 2.10) should never exceed the time shown below.

Print solenoid:
Fast paper feed trigger solenoid:

1 sec .
5 sec .

SHEET REVISION	NO.	
	NEXT	SHEET
A		17

2.12 Terminal Assignment

Connection
Fast paper feed trigger solenoid
Fast paper feed trigger solenoid
Reset detector

Reset detector
Motor (+)
Motor (-)
Print solenoid (B)

Print solenoid (C)
Print solenoid (D)
Print solenoid (E)
Print solenoid (F)
Print solenoid (G)

Print solenoid (H)
Common for print solenoids
Common for print solenoids
Print solenoid (A)
Timing detector
Timing detector

Terminal No.
1

2

3

4

5

6

7

8

9
10

11

12

13
14

15
16
17
18

NOTE: 1. Terminals are numbered $1,2, \ldots 18$ from the left side of the edge-connector pattern on the board.

SHEET REVISION	NO.	
A	NEXT	SHEET
		18

2.13.2 Detailed timing signal T distribution (5×7 dot matrix, 3 -dot line spacing)

NOTE: () in the figure denote the number of timing pulse T in the case of fast paper feed by energizing the fast paper feed trigger solenoid at dot line 8.

Title	M-190 Specification (STANDARD)	SHEET REVISION A	No.	
			NEXT	SHEET

2.13.3 Description of operation (5×7 dot matrix)

1) In case of 3 -dot line spacing:
(a) Continuous printing
(1) Count the number of timing pulses after starting up the motor. Check whether or not reset signal R is generated during the period from the leading edge of timing signal 44 to the leading edge of timing signal 45. Then, follow a) or b) below.
a) When reset signal R isn't generated:

Hereafter, the first reset signal R is taken to be R1, and the first timing pulse after R1 is T1.
b) When reset signal R is generated:

Start counting the timing pulses from the next one. The reset signal R arising after the number of timing pulses reaches 45 is R1, and the first timing signal after the rising edge of $R 1$ is $T 1$.
(2) The left-most upper dot of the 1st, 10th and 19th columns is printed by applying drive pulse P1 of T1 to T2 to print solenoids A, D and G.
(3) The left-most upper dot of the 4 th, 13 th and 22 nd columns is printed by applying drive pulse P2 of T2 to $T 3$ to print solenoids B_{1}, E and H.
(4) The left-most upper dot of the 7 th and 16 th columns is printed by applying drive pulse P3 of T3 to T4 to print solenoids C and F .
(5) The above procedure is repeated; and when drive pulse P51 of T51 to T52 is applied to print solenoids C and F, the upper-right dot of the 9 th and 18 th columns is printed.
(6) One dot of character space is obtained for the right-most column $<(3,12,21),(6,15,24)$, $(9,18)>$ of each print solenoid. Paper is automatically fed one dot when the print head returns during the time from T55 to T90, and this completes the printing of one dot line.
(8) Afterward, counting of timing pulses is continued (T91, T92, ...), and printing is carried out up to dot line 7. The right-most lower dot of columns 9 and 18 is printed by applying drive pulse P591 (from T591 to T592) to print solenoids C and F. This completes the printing of the 5×7 dot matrix.
(8) Continue to count the timing pulses, and drive the fast paper feed trigger solenoid for the period from the leading edge of timing pulse T631 in dot line 8 to the leading edge of T636 which is the 5th pulse from T631. Fast paper feed is performed (3 pitches while print head moves back and forth) and thus 3 -dot line spacing is obtained.
(9) Printing of the next line is started with R1, which is the next reset signal generated after timing pulse T664 in dot line 8.

* From (8) on, the fast paper feed trigger sqlenoid can be energized using reset pulse R as a reference.
(B)'The reset pulse generated after timing pulse T574 of dot line 7 is detected. After this detection, the first timing pulse is Tf 1 , and fast paper feed is performed by driving the fast feed trigger solenoid during the period from the leading edge of Tf1 to that of Tf6.

TITLEE

SHEET REVISION	NO.	
	NEXT	SHEET
A		21

(5)' The timing pulses used for driving the fast feed trigger solenoid are counted continuously, and the reset pulse after Tf34 is taken as R1, after which printing is started.
(b) Intermittent printing
(1) Same as Step (1) to (1) of 2.13 .3 1) (a).
(2) In dot lines 8 and 9 , the fast feed trigger solenoid is not driven, and the paper is fed automatically. The reset pulse generated after timing pulse T754 is R10, and the motor is stopped quickly after this reset pulse.
(3) Repeat Steps (1) and (2):
2) When printing again after setting n-line spacing:
(a) Continuous printing
(1) Same as Step (1) to (8) of 2.13 .3 1) (a):
(8) Printing of the next line started with the next reset pulse (R1) generated after timing pulse T664 (or Tf34) in dot line 8. The paper is fed at fast-speed (in the same manner as 2.13.3 1), (a)-(8) m times units Rm. (m is obtained from formula 1.)
(3) The fast paper feed trigger solenoid is not energized, and paper is fed automatically until $\mathrm{R}(\mathrm{m}+\mathrm{a}+1)$ while counting reset pulses.
(4) Printing of the next line is started with $R(m+a+1)$ as $R 1$.
$(10 \times n) / 3=m$, remainder a-- (formula 1)
where n : number of space lines
m, a : integer values
(Example)
To feed paper for 4 lines (40 dot lines)

$$
\begin{aligned}
n=4 \rightarrow m=13 \\
a=1
\end{aligned} \quad \begin{aligned}
n m=R 13 \Rightarrow & \text { Fast paper feed } 13 \text { times } \\
& R(m+a+1)=R 15=\text { The R1 pulse for the next line }
\end{aligned}
$$

(b) Intermittent printing
(1) Same as Step (1) to (8) of 2.13 .3 1) (a).
(2) Printing of the next column is started with the next reset pulse as R1 that is generated after timing pulse T 664 (or Ti34) in dot line 8 . The paper is fed at fast-speed (in the same manner as 2.13 .3 1) (a), Step (8)) m times until Rm. (m is obtained from formula 2 below.)
(3) The fast paper feed trigger solenoid is not energized, and paper is fed automatically until $R(m+a+1)$ is generated while counting reset pulses. After $R(m+a+1)$ is generated, the motor is stopped quickly.

SHEET	NO.	
A	NEXT	SHEET
		22

(4) Start printing in the same manner as Steps (1) to (7) of 2.13.3 1) (a).
$(10 \times n-1) / 3=m$, remainder $a--($ formula 2)
where n : number of space lines
m ; a: integer values
(Example)
To feed paper for 4 lines (40 dot lines)
$n=4 \rightarrow m=13 \quad \Rightarrow R m=R 13 \Rightarrow$ Fast paper feed 13 times
$a=0 \quad R(m+a+1)=R 14 \Rightarrow$ Reset signal R used to stop the motor quickly.

2.13.4 Bit image printing

When bit image printing is activated, T 1 is detected according to the procedure described in 2.13.3 1) (a) Step (1) , after which printing is carried out while counting timing pulses until the bit image printing is finished.
※ For the continuous energizing time for the print solenoid, refer to Section 2.8.8).

2.13.5 Reset signal R

1) After detecting reset pulse R1, reset pulse R which is generated after timing pulse $T(90 \times(n-2)$ +34) is taken as Rn.
2) The initialization procedure for verifying that the print head is in the standby mode is completed automatically by detecting the above R1 pulse. Timing pulse T1, which indicates the standard dot position for each character print cycle, is determined by detecting R1.
3) In standby mode, the reset signal reed switch may be open or closed.

NOTES: 1. Periods when print solenoid must not be energized:

1) From motor start-up to the leading edge of reset pulse R1 (from motor start-up to steady driving)
2) From $\mathrm{T} 55+90 \mathrm{n}$ to $\mathrm{T} 90+90 \mathrm{n}$ (while print head returns) ($n=0$ to $10,5 \times 7$ dot matrix, 3 -dot line spacing)
3) From the moment when the fast paper feed trigger solenoid is energized to the next reset pulse.
2. The print solenoid drive pulses should not be activated or stopped by noise.
3. The fast paper feed trigger solenoid drive pulse should not be activated or stopped by noise.
4. The fast paper feed trigger solenoid should not be energized by the reset pulse which turns off the motor drive signal.

EDSON:	TITLE $\begin{array}{cc} \\ & M-190 \\ & \text { Specification } \\ & \text { (STANDARD) }\end{array}$	SHEET REVISION A	NO.	
				23

3. PRESSURE SENSITIVE PAPER SPECIFICATIONS

3.1 Applied Model

M-190

3.2 Characteristic Items and Tolerances

1) Paper feed pitch:
$0.37 \mathrm{~mm} \pm 15 \%$ per 1 -dot line
2) Print starting position:
$L=5.2 \pm_{2.8}^{2.2} \mathrm{~mm}$ from the left end of the paper

<Conditions>

Room temperature and normal humidity
On condition that paper without any folded edges is fed in the normal operating environment.

<Figure $1>$

3.3 Terminal Voltages of Print Solenoid and Motor

Both terminal voltages should match and fall within the voltage range shown by mems in $<$ Figure $2>$.

The shaded area shown by is available only when using $\mathrm{Ni}-\mathrm{Cd}$ battery.

<Figure 2>

Cosel	TITLE		SHEET REVISION	NO.	
		M-190 Specification (STANDARD)	A	NEXT	SHEET

3.4 Print Method

1) Upper sheet (original):
2) Lower sheet (copy):

Printed by the ribbon

Printed by pressure sensitive copying (Only one copy is available.)

3.5 Paper

- Cut sheet and roll paper

1) Cut shieet:
$\begin{array}{ll}\text { (a) Type: } & \text { No-carbon paper (by MITSUBISHI SEISHI) } \\ & \text { N40 upper sheet } \mathrm{Hi}+\text { lower sheet, blue color }\end{array}$
Paper thickness: upper sheet 0.066 mm weight: $47.0 \mathrm{~g} / \mathrm{m}^{2}$. lower sheet 0.058 mm weight: $47.0 \mathrm{~g} / \mathrm{m}^{2}$
(b) Size: \quad Cut sheet; $57.5 \pm 0.5 \mathrm{~mm}(\mathrm{~W}) \times$ Max. 300 mm (L)
(c) Glue conditions
(1) Glued portion (see Figure 3)
(2) NOTES:
1. No past can ooze outside the portion beyond the wavy line in the figure.
2. Paper should be pasted evenly.
3. Glued portion must not harden.
4. Whether the printer is under operating or storage condition, glued sheets should not peel off and paste must not run out (ooze out).

EDSM	TITLE	$M-190$ Specification (STANDARD)	$\begin{aligned} & \text { SHEET } \\ & \text { REVISION } \end{aligned}$		
				NO.	
			A	NEXT	SHEET

(d) Filing hole position: See <Figure 3>
(1) Dimensions

Model	Paper width (W)	Dimension A
M-190	$57.5 \pm 0.5 \mathrm{~mm}$	30 mm or more

(8) A filing hole can be placed within the area filled with oblique lines in the figure.
(3) The first line must be printed 5 mm or more below the hole and 30 mm or more below the top of the paper.
(4) Nothing shall be printed within 15 mm from the end of the paper.

<Figure 3>

Title	$M-190$ Specification (STANDARD)	SHEET REVISION	NO.	
		A	NEXT	$\begin{array}{\|r} \text { SHEET } \\ 28 \\ \hline \end{array}$

2) Roll paper:
(a) Type: No-carbon paper (by MITSUBISHI SEISHI)

N40 upper sheet $\mathrm{Hi}+$ Lower sheet, blue color
Paper thickness: upper sheet 0.066 mm weight: $47.0 \mathrm{~g} / \mathrm{m}^{2}$
lower sheet 0.058 mm weight: $47.0 \mathrm{~g} / \mathrm{m}^{2}$
(b) Size and product number
(1) When paper roll with outside diameter of 030 mm or less is used:

Units: mm

Model	Paper size	Product Number
M-190	$57.5 \pm 0.5 \mathrm{~mm}(\mathrm{~W}) \times \varnothing 30+0 \mathrm{~mm}$ (outside diameter) $\times \varnothing 10-0 \mathrm{~mm}$ (inside diameter)	ESP-01 by Kobayashi Kirokushi

NOTE: The above listed paper is recommended in order to avoid paper jams due to inappropriate roll end conditions found on other roll papers.
(2) When roll paper with an outside diameter of more than $\varnothing 30 \mathrm{~mm}$ is used:

Units: mm

Model	Paper size
M-190	$57.5 \pm 0.5 \mathrm{~mm}(\mathrm{~W})$ \times max. $\varnothing 80 \mathrm{~mm}$ (outside diameter) \times max. $\varnothing 10 \mathrm{~mm}$ (inside diameter)

NOTE: We do not have any recommendable paper roll with an outside diameter of greater than $\varnothing 30 \mathrm{~mm}$. Therefore, for larger diameters, discuss the details with the paper manufacture while referring to above Section 1), 2)-(b), and Section 3).

EMOM	title	M-190 Specification (STANDARD)	SHEET REVISION A	No.	
				NEXT	SHEET 29

(c) Notes on using paper rolls with an outside diameter of more than $\varnothing 30 \mathrm{~mm}$:
(1) Conditions on inside end of roll paper (with or without a core)

1. No fold is allowed. The paper must be wound so that the paper edge goes along the internal circumference. (Refer to Figure A below.)
2. No folding back is allowed.
3. Inside end must not be glued to the core (when a core exists).
4. Upper and lower papers must not be glued to each other.

Figure A

Incorrect
<Figure 4>
(2) Paper supply load

The case should be designed so that the paper supply load at the paper entrance is 30 g or less.
(3) Roll paper sag

When pressure sensitive roll paper is used, the difference in diameter between the upper and lower papers generates an upper paper sag and, as seen from the side, the initial circular shape of the paper roll is distorted to form an ellipse. The diameter of the ellipse eventually becomes larger than the initial diameter of the roll. (See <Figure 5>.) The shape of the case around the roll paper holder should be designed so that it allows some sag of the upper paper.
Besides this, when a paper take-up device is employed, be careful of its position to prevent the upper paper sag from being taken up by the device.

SHEET REVISION	NO.	
A	NEXT	SHEET
		30

<Figure 5>
3) Others (common to cut sheet and roll paper):
(a) Other characteristics

Impact, friction, temperature, humidity, light, and oil contamination do affect the color and life of no-carbon paper. This means that all these factors should be taken into account when handling this type of paper. Discuss the details with the paper manufacturers.
(b) Other notes
(1) Paper with folds, wrinkles, or tears should not be used.
(2) Neither perforations nor holes can be positioned within the printable area.
(3) Paper should be pulled out slowly and straight-forwardly.
(4) When printing is stopped in the middle of a print job and the paper is reset after being pulled out or moved, printing position and pitch cannot be guaranteed for subsequent printing.
(5) When loading the paper, be sure the upper and lower paper fit correctly.
(c) Storage

Unused paper should be stored so as to avoid impact, friction, light, and oil, and should be kept under adequate temperature and humidity conditions.

TITLE	M-190 Specification (STANDARD)	SHEET REVISION A	NO.	
			NEXT	$\begin{array}{\|r\|} \hline \text { SHEET } \\ 31 \\ \hline \end{array}$

4. OUTER CASE DESIGN GUIDE

4.1 Motor Drive Signal and Motor Brake Signal

1) Phasing:

The leading edge of the motor brake signal must be within 0.5 ms from the trailing edge of the motor drive signal.

2) Motor brake signal:

The motor brake signal must be applied for 100 ms or more. If the power consumption required for braking the motor is disregarded, this duration can be prolonged up to the leading edge of the subsequent signal.

4.2 Connections

A copper foil edge connector with a 2.5 mm pitch is fixed to the printer frame. The printer can be connected to external circuits by soldering flat cables or lead wires to the copper foil pattern. When selecting and using cables and wires, the current capacity must be taken into account for each of the print solenoid signals, i.e. the common, A, B, C, D, E, F, G and H. Be sure that the soldered portions are not placed under mechanical stress. (For the detailed dimensions, refer to the figures illustrating the terminal assignment and the overall dimensions.)

SHEET REVISION	NO.	
	NEXT	SHEET
A		32

4.3 Ribbon Cassette Handling

1) It is desirable to mount the ribbon cassette after removing the paper.
2) Before mounting the cassette, the ribbon should be tightened by rotating the ribbon feed roller in the direction shown by the arrow. Then place the cassette so as to insert the ribbon between the gap by matching the cutouts on the left and right sides of the printer frame. The cassette can be easily installed by pushing it down gently. Be careful not to lock the ribbon feed roller. (See Figures 1 and 2 below.)
(It will be easier to install if the cassette is pressed down while rotating the ribbon feed roller in the direction of the arrow.)
Even if the ribbon is tucked up or sags while mounting, it can be tightened and fixed to its proper position by rotating the roller after inserting the cassette frame. (See Figure 3 below.)
3) To remove the ribbon cassette, push the portion marked PUSH with a finger. The other side of the cassette will go up. Then rotate and remove the cassette using the PUSH mark as the center of rotation. When designing the case, be sure to provide the necessary space which allows the rotation. (See Figure 4 below.)
(For the detailed dimensions, see the overall dimension figures.)
NOTE: In order to assure good print quality, use a standard ribbon cassette (ERC-09 or ERC-22).

多

4.4 Paper Entrance and Paper Holder Design

1) The center of the paper holder on the case side must be aligned with the center of the paper entrance width on the printer side. The paper guide must be able to guide paper which is $57.5 \pm 0.5 \mathrm{~mm}$ wide.
2) Clearance between the paper holder on the case side and the roll paper width must be 2.0 mm or less. However, the clearance must be sufficient to prevent the holder from pressing or rubbing against both sides of the paper roll.
(See the overall dimensions figure for the dimensions of the paper entrance.)
3) Paper supply load at the paper entrance should be 30 g or less.

4.5 Paper Cutter Design

When designing the paper cutter, the followings should be taken into account:

1) The more the paper near the Paper Exit (i.e. paper cutter mounting position) approaches the vertical, the more the paper resonates, making printing noise greater.
2) On the other hand, the more the paper approaches the horizontal, the more the paper feed load increases. This may cause paper feeding problems.
3) The figure in Section 2.14 (Overall Dimensions) gives a reference position for mounting the paper cutter.

4.6 Case Design around the Paper Feed Knob

Because the Paper Feed Knob rotates while the printer is operating, the following items should be considered:

1) The paper feed knob must not touch the case.
2) The knob must not project outside the case. The knob should be protected.

4.7 Paper Roll-in Protection

When designing the case, be sure to prevent printed paper from being taken up again.

4.8 External Interference Protection

Since a reed switch is employed as the reset detector, be sure to protect the printer from external magnetic fields. In particular the upper surface of the cover should be kept away from magnetic fields.

	TITLE	$M-190$ Specification (STANDARD)	SHEET REVISION	NO.	
			A	NEXT ${ }^{-}$	SHEET 34

4.9 Other Notes on Designing the Outer Case

The openings in the case, such as the paper entrance and paper cut position (i.e. Paper Exit) should be as small as possible in order to minimize noise.

4.10 Notes on Printer Handling

1) Printing without paper or ribbon is prohibited to avoid damaging the printer.
2) Because plated steel plate is used in this unit, the cut edges may get rusty.

4.11 Printer Installation

Refer to Pages 36 and 37.

SHEET REVISION	NO.	
	NEXT	SHEET
A		35

| EPSON | TITLE

 Specification
 (STANDARD) | SHEETION
 REVISN | NO.
 AEXT SHEET
 37 |
| :--- | :--- | :---: | :---: | :---: | :---: |

NOTES: 1.
4.11.2 An example installation procedure for a printer with a vertical paper feed ※ How to fix the case around the paper feed knob:

For a printer with a paper feed knob, the case cannot be fixed with screws around that
portion. Therefore, the frame should be attached to the case at face "D" and face "E" of the portion marked with oblique lines in the figure so as to suppress frame shaking in the Z - әq!ssod se yonu se uo!̣วə!
(2) For the Y direction, position the printer by attaching the frame face " A " to the case. B " and " C " to the case. (3) Insert screws into mounting holes \#1 to \#3, and tighten them.

5. RIBBON CASSETTE SPECIFICATIONS

5.1 Ribbon Cassette Specifications

Two types of ribbon cassette (ERC-09 and ERC-22) can be used with this model. The table below gives the detailed specifications.

Product Number	ERC-09	ERC-22
Size (mm)	$90.9(\mathrm{~W}) \times 24.9(\mathrm{D}) \times 7.0(\mathrm{H})$	$90.9(\mathrm{~W}) \times 26.4(\mathrm{D}) \times 6.3(\mathrm{H})$
Weight	Approx. 3.5 g	Approx. 4.0 g
Life	Purple: Appox. 250,000 characters Black: Approx. 200,000 characters (At $4.8 \mathrm{VDC}, 25^{\circ} \mathrm{C}$, continuous printing) (Print mode is as shown in Attached Table 1.) Blacp: Approx. 1 million characters	
Color	Purple or Black	
Humidity during operation	$40^{\circ} \mathrm{C} \times 80 \% \mathrm{RH}$	

※ Refer to the Ribbon Cassette Specifications for details.

M-190

$\mathrm{M}-190$ Specification (STANDARD)	SHEET REVISION A	NO.	
		NEXT	$\begin{array}{\|r} \hline \text { SHEET } \\ 38 \end{array}$

5.2 ERC-09 Overall Dimensions

| SHEET |
| :--- | :--- |
| REVISION |$|$| NO. |
| :--- |
| |
| |
| |

5.3 ERC-22 Overall Dimensions

Units: mm

Attached Table.1. Print Sample

EPSON	TITLE $M-190$ Specification (STANDARD)	$\begin{aligned} & \text { SHEET } \\ & \text { REVISION } \end{aligned}$	NO.	
		A	NEXT	$\begin{gathered} \text { SHEET } \\ \text { App. } 1 \end{gathered}$

REVISION SHEET

Sheet 1 of 1
Be sure to check the contents before utilizing the specification because this specification has the history as shown below.

